OLED Troubles Nooooobbbb

Hey,

So iv been racking my mind how to convert this to the Heltec board, any help would be really good…

thanks all

/*

Measure the liquid/water flow rate using this code.
Connect Vcc and Gnd of sensor to arduino, and the
signal line to arduino digital pin 2.

*/
#include <Wire.h>
#include <Adafruit_GFX.h>
#include <Adafruit_SSD1306.h>
#define SCREEN_WIDTH 128 // OLED display width, in pixels
#define SCREEN_HEIGHT 64 // OLED display height, in pixels

                                                                     // Declaration for an SSD1306 display connected to I2C (SDA, SCL pins)

Adafruit_SSD1306 display(SCREEN_WIDTH, SCREEN_HEIGHT, &Wire, -1);

byte statusLed = 25;

byte sensorInterrupt = 0; // 0 = digital pin 2
byte sensorPin = 0;

// The hall-effect flow sensor outputs approximately 4.5 pulses per second per
// litre/minute of flow.
float calibrationFactor = 13.00;

volatile byte pulseCount;

float flowRate;
unsigned int flowMilliLitres;
unsigned long totalMilliLitres;

unsigned long oldTime;

void setup()
{

// Initialize a serial connection for reporting values to the host
Serial.begin(9600);
Wire.begin(4,15);
// Set up the status LED line as an output
pinMode(statusLed, OUTPUT);
digitalWrite(statusLed, HIGH); // We have an active-low LED attached

pinMode(sensorPin, INPUT);
digitalWrite(sensorPin, HIGH);

pulseCount = 0;
flowRate = 0.0;
flowMilliLitres = 0;
totalMilliLitres = 0;
oldTime = 0;

// The Hall-effect sensor is connected to pin 2 which uses interrupt 0.
// Configured to trigger on a FALLING state change (transition from HIGH
// state to LOW state)
// attachInterrupt(sensorInterrupt, pulseCounter, FALLING);
//Heltec.begin(true /DisplayEnable Enable/, false /LoRa Disable/, true /Serial Enable/);

// Heltec.display->flipScreenVertically();
//Heltec.display->setFont(ArialMT_Plain_10);
if(!display.begin(SSD1306_SWITCHCAPVCC, 0x3C))
{ // Address 0x3D for 128x64
Serial.println(F(“SSD1306 allocation failed”));
for(;;);
}
Serial.println(F(“SSD1306 allocatED”));
delay(2000);
display.clearDisplay();
display.setTextColor(SSD1306_WHITE);
display.setTextSize(2);
display.setCursor(0,0);
display.print(" WELCOME");
display.setTextSize(2);
display.setCursor(0,20);
display.print(" TO");
display.setTextSize(2);
display.setCursor(0,40);
display.print(" MattsFlow");

display.display();
delay(2000);
}

/**

  • Main program loop
    */
    void loop()
    {

    if((millis() - oldTime) > 1000) // Only process counters once per second
    {
    // Disable the interrupt while calculating flow rate and sending the value to
    // the host
    detachInterrupt(sensorInterrupt);

    // Because this loop may not complete in exactly 1 second intervals we calculate
    // the number of milliseconds that have passed since the last execution and use
    // that to scale the output. We also apply the calibrationFactor to scale the output
    // based on the number of pulses per second per units of measure (litres/minute in
    // this case) coming from the sensor.
    flowRate = ((1000.0 / (millis() - oldTime)) * pulseCount) / calibrationFactor;

    // Note the time this processing pass was executed. Note that because we’ve
    // disabled interrupts the millis() function won’t actually be incrementing right
    // at this point, but it will still return the value it was set to just before
    // interrupts went away.
    oldTime = millis();

    // Divide the flow rate in litres/minute by 60 to determine how many litres have
    // passed through the sensor in this 1 second interval, then multiply by 1000 to
    // convert to millilitres.
    flowMilliLitres = (flowRate / 60) * 1000;

    // Add the millilitres passed in this second to the cumulative total
    totalMilliLitres += flowMilliLitres;

    unsigned int frac;

    // Print the flow rate for this second in litres / minute
    Serial.print(“Flow rate: “);
    Serial.print(int(flowRate)); // Print the integer part of the variable
    Serial.print(”.”); // Print the decimal point
    // Determine the fractional part. The 10 multiplier gives us 1 decimal place.
    frac = (flowRate - int(flowRate)) * 10;
    Serial.print(frac, DEC) ; // Print the fractional part of the variable
    Serial.print(“L/min”);
    // Print the number of litres flowed in this second
    Serial.print(" Current Liquid Flowing: "); // Output separator
    Serial.print(flowMilliLitres);
    Serial.print(“mL/Sec”);

    // Print the cumulative total of litres flowed since starting
    Serial.print(" Output Liquid Quantity: "); // Output separator
    Serial.print(totalMilliLitres);
    Serial.println(“mL”);

String Flowrate=“FR:”+String(flowRate)+“L/m”;
String Lqflowing=“LF:”+String(flowMilliLitres)+“mL/s”;
String lqQuantity=“LQ:”+String(totalMilliLitres)+“mL”;
// Heltec.display->setTextAlignment(TEXT_ALIGN_LEFT);
// Heltec.display->setFont(ArialMT_Plain_10);
// Heltec.display->drawString(0, 0,Flowrate);
// Heltec.display->drawString(0, 10,Lqflowing);
// Heltec.display->drawString(0, 20,lqQuantity);
display.clearDisplay();
display.setTextColor(SSD1306_WHITE);
display.setTextSize(2);
display.setCursor(0,0);
display.print(Flowrate);
display.setTextSize(2);
display.setCursor(0,20);
display.print(Lqflowing);
display.setTextSize(2);
display.setCursor(0,40);
// display.print();
display.print(lqQuantity);

display.display();

// Reset the pulse counter so we can start incrementing again
pulseCount = 0;

// Enable the interrupt again now that we've finished sending output
attachInterrupt(sensorInterrupt, pulseCounter, FALLING);

}
}

/*
Insterrupt Service Routine
*/
void pulseCounter()
{
// Increment the pulse counter
pulseCount++;
}