Hello, how are you? . The device communicates, it goes to sleep but never gets up again, can you help me with this? .
Frecuency : AU915MHZ
I leave you the code that I am using.
I’m using the following code:
/* The example is for CubeCell_GPS,
- GPS works only before lorawan uplink, the board current is about 45uA when in lowpower mode.
*/
#include “LoRaWan_APP.h”
#include “Arduino.h”
#include “GPS_Air530.h”
#include “GPS_Air530Z.h”
#include “HT_SSD1306Wire.h”
Air530ZClass GPS;
extern SSD1306Wire display;
//when gps d, if in GPS_UPDATE_TIMEOUT, gps not fixed then into low power mode
#define GPS_UPDATE_TIMEOUT 17000
//once fixed, GPS_CONTINUE_TIME later into low power mode
#define GPS_CONTINUE_TIME 15000
/*
set LoraWan_RGB to Active,the RGB active in loraWan
RGB red means sending;
RGB purple means joined done;
RGB blue means RxWindow1;
RGB yellow means RxWindow2;
RGB green means received done;
*/
/* OTAA para*/
uint8_t appEui[] = { };
uint8_t devEui[] = { }; //LSB
uint8_t appKey[] = { };
/* ABP para*/
uint8_t nwkSKey[] = { };
uint8_t appSKey[] = { };
uint32_t devAddr = ;
/LoraWan channelsmask, default channels 0-7/
//uint16_t userChannelsMask[6]={ 0x00FF,0x0000,0x0000,0x0000,0x0000,0x0000 };
uint16_t userChannelsMask[6]={ 0xFFFF,0x0000,0x0000,0x0000,0x0003,0x0000 };
/LoraWan region, select in arduino IDE tools/
LoRaMacRegion_t loraWanRegion = ACTIVE_REGION;
/LoraWan Class, Class A and Class C are supported/
DeviceClass_t loraWanClass = LORAWAN_CLASS;
/the application data transmission duty cycle. value in [ms]./
uint32_t appTxDutyCycle = 90000;
/OTAA or ABP/
bool overTheAirActivation = LORAWAN_NETMODE;
/ADR enable/
bool loraWanAdr = LORAWAN_ADR;
/* set LORAWAN_Net_Reserve ON, the node could save the network info to flash, when node reset not need to join again */
bool keepNet = LORAWAN_NET_RESERVE;
/* Indicates if the node is sending confirmed or unconfirmed messages */
bool isTxConfirmed = LORAWAN_UPLINKMODE;
/* Application port /
uint8_t appPort = 2;
/!
Number of trials to transmit the frame, if the LoRaMAC layer did not
receive an acknowledgment. The MAC performs a datarate adaptation,
according to the LoRaWAN Specification V1.0.2, chapter 18.4, according
to the following table:
Transmission nb | Data Rate |
---|---|
1 (first) | DR |
2 | DR |
3 | max(DR-1,0) |
4 | max(DR-1,0) |
5 | max(DR-2,0) |
6 | max(DR-2,0) |
7 | max(DR-3,0) |
8 | max(DR-3,0) |
Note, that if NbTrials is set to 1 or 2, the MAC will not decrease
the datarate, in case the LoRaMAC layer did not receive an acknowledgment
*/
uint8_t confirmedNbTrials = 3;
int32_t fracPart(double val, int n)
{
return (int32_t)((val - (int32_t)(val))*pow(10,n));
}
void VextON(void)
{
pinMode(Vext,OUTPUT);
digitalWrite(Vext, LOW);
}
void VextOFF(void) //Vext default OFF
{
pinMode(Vext,OUTPUT);
digitalWrite(Vext, HIGH);
}
void displayGPSInof()
{
char str[30];
display.clear();
display.setFont(ArialMT_Plain_10);
int index = sprintf(str,"%02d-%02d-%02d",GPS.date.year(),GPS.date.day(),GPS.date.month());
str[index] = 0;
display.setTextAlignment(TEXT_ALIGN_LEFT);
display.drawString(0, 0, str);
index = sprintf(str,"%02d:%02d:%02d",GPS.time.hour(),GPS.time.minute(),GPS.time.second(),GPS.time.centisecond());
str[index] = 0;
display.drawString(60, 0, str);
if( GPS.location.age() < 1000 )
{
display.drawString(120, 0, “A”);
}
else
{
display.drawString(120, 0, “V”);
}
index = sprintf(str,“alt: %d.%d”,(int)GPS.altitude.meters(),fracPart(GPS.altitude.meters(),2));
str[index] = 0;
display.drawString(0, 16, str);
index = sprintf(str,“hdop: %d.%d”,(int)GPS.hdop.hdop(),fracPart(GPS.hdop.hdop(),2));
str[index] = 0;
display.drawString(0, 32, str);
index = sprintf(str,“lat : %d.%d”,(int)GPS.location.lat(),fracPart(GPS.location.lat(),4));
str[index] = 0;
display.drawString(60, 16, str);
index = sprintf(str,“lon:%d.%d”,(int)GPS.location.lng(),fracPart(GPS.location.lng(),4));
str[index] = 0;
display.drawString(60, 32, str);
index = sprintf(str,“speed: %d.%d km/h”,(int)GPS.speed.kmph(),fracPart(GPS.speed.kmph(),3));
str[index] = 0;
display.drawString(0, 48, str);
display.display();
}
void printGPSInof()
{
Serial.print(“Date/Time: “);
if (GPS.date.isValid())
{
Serial.printf(”%d/%02d/%02d”,GPS.date.year(),GPS.date.day(),GPS.date.month());
}
else
{
Serial.print(“INVALID”);
}
if (GPS.time.isValid())
{
Serial.printf(" %02d:%02d:%02d.%02d",GPS.time.hour(),GPS.time.minute(),GPS.time.second(),GPS.time.centisecond());
}
else
{
Serial.print(" INVALID");
}
Serial.println();
Serial.print("LAT: “);
Serial.print(GPS.location.lat(),6);
Serial.print(”, LON: “);
Serial.print(GPS.location.lng(),6);
Serial.print(”, ALT: ");
Serial.print(GPS.altitude.meters());
Serial.println();
Serial.print("SATS: “);
Serial.print(GPS.satellites.value());
Serial.print(”, HDOP: “);
Serial.print(GPS.hdop.hdop());
Serial.print(”, AGE: “);
Serial.print(GPS.location.age());
Serial.print(”, COURSE: “);
Serial.print(GPS.course.deg());
Serial.print(”, SPEED: ");
Serial.println(GPS.speed.kmph());
Serial.println();
}
static void prepareTxFrame( uint8_t port )
{
/*appData size is LORAWAN_APP_DATA_MAX_SIZE which is defined in “commissioning.h”.
appDataSize max value is LORAWAN_APP_DATA_MAX_SIZE.
if enabled AT, don’t modify LORAWAN_APP_DATA_MAX_SIZE, it may cause system hanging or failure.
if disabled AT, LORAWAN_APP_DATA_MAX_SIZE can be modified, the max value is reference to lorawan region and SF.
for example, if use REGION_CN470,
the max value for different DR can be found in MaxPayloadOfDatarateCN470 refer to DataratesCN470 and BandwidthsCN470 in “RegionCN470.h”.
*/
float lat, lon, alt, course, speed, hdop, sats;
Serial.println(“Waiting for GPS FIX …”);
VextON();// oled power on;
//delay(10);
display.init();
display.clear();
display.setTextAlignment(TEXT_ALIGN_CENTER);
display.setFont(ArialMT_Plain_16);
display.drawString(64, 32-16/2, “GPS Searching…”);
Serial.println(“GPS Searching…”);
display.display();
GPS.begin();
uint32_t start = millis();
while( (millis()-start) < GPS_UPDATE_TIMEOUT )
{
while (GPS.available() > 0)
{
GPS.encode(GPS.read());
}
// gps fixed in a second
if( GPS.location.age() < 1000 )
{
break;
}
}
//if gps fixed, GPS_CONTINUE_TIME later stop GPS into low power mode, and every 1 second update gps, print and display gps info
if(GPS.location.age() < 1000)
{
start = millis();
uint32_t printinfo = 0;
while( (millis()-start) < GPS_CONTINUE_TIME )
{
while (GPS.available() > 0)
{
GPS.encode(GPS.read());
}
if( (millis()-start) > printinfo )
{
printinfo += 1000;
printGPSInof();
displayGPSInof();
}
}
}
else
{
display.clear();
display.setTextAlignment(TEXT_ALIGN_CENTER);
display.setFont(ArialMT_Plain_16);
display.drawString(64, 32-16/2, “No GPS signal”);
Serial.println(“No GPS signal”);
display.display();
// delay(2000);
}
GPS.end();
display.clear();
display.display();
display.stop();
VextOFF(); //oled power off
lat = GPS.location.lat();
lon = GPS.location.lng();
alt = GPS.altitude.meters();
course = GPS.course.deg();
speed = GPS.speed.kmph();
sats = GPS.satellites.value();
hdop = GPS.hdop.hdop();
uint16_t batteryVoltage = getBatteryVoltage();
unsigned char *puc;
appDataSize = 0;
puc = (unsigned char *)(&lat);
appData[appDataSize++] = puc[0];
appData[appDataSize++] = puc[1];
appData[appDataSize++] = puc[2];
appData[appDataSize++] = puc[3];
puc = (unsigned char *)(&lon);
appData[appDataSize++] = puc[0];
appData[appDataSize++] = puc[1];
appData[appDataSize++] = puc[2];
appData[appDataSize++] = puc[3];
puc = (unsigned char *)(&alt);
appData[appDataSize++] = puc[0];
appData[appDataSize++] = puc[1];
appData[appDataSize++] = puc[2];
appData[appDataSize++] = puc[3];
puc = (unsigned char *)(&course);
appData[appDataSize++] = puc[0];
appData[appDataSize++] = puc[1];
appData[appDataSize++] = puc[2];
appData[appDataSize++] = puc[3];
puc = (unsigned char *)(&speed);
appData[appDataSize++] = puc[0];
appData[appDataSize++] = puc[1];
appData[appDataSize++] = puc[2];
appData[appDataSize++] = puc[3];
puc = (unsigned char *)(&hdop);
appData[appDataSize++] = puc[0];
appData[appDataSize++] = puc[1];
appData[appDataSize++] = puc[2];
appData[appDataSize++] = puc[3];
appData[appDataSize++] = (uint8_t)(batteryVoltage >> 8);
appData[appDataSize++] = (uint8_t)batteryVoltage;
Serial.print(“SATS: “);
Serial.print(GPS.satellites.value());
Serial.print(”, HDOP: “);
Serial.print(GPS.hdop.hdop());
Serial.print(”, LAT: “);
Serial.print(GPS.location.lat());
Serial.print(”, LON: “);
Serial.print(GPS.location.lng());
Serial.print(”, AGE: “);
Serial.print(GPS.location.age());
Serial.print(”, ALT: “);
Serial.print(GPS.altitude.meters());
Serial.print(”, COURSE: “);
Serial.print(GPS.course.deg());
Serial.print(”, SPEED: “);
Serial.println(GPS.speed.kmph());
Serial.print(” BatteryVoltage:”);
Serial.println(batteryVoltage);
}
void setup() {
Serial.begin(115200);
#if(AT_SUPPORT)
enableAt();
#endif
LoRaWAN.displayMcuInit();
deviceState = DEVICE_STATE_INIT;
LoRaWAN.ifskipjoin();
}
void loop()
{
switch( deviceState )
{
case DEVICE_STATE_INIT:
{
#if(LORAWAN_DEVEUI_AUTO)
LoRaWAN.generateDeveuiByChipID();
#endif
#if(AT_SUPPORT)
getDevParam();
#endif
printDevParam();
LoRaWAN.init(loraWanClass,loraWanRegion);
deviceState = DEVICE_STATE_JOIN;
break;
}
case DEVICE_STATE_JOIN:
{
LoRaWAN.displayJoining();
LoRaWAN.join();
break;
}
case DEVICE_STATE_SEND:
{
prepareTxFrame( appPort );
LoRaWAN.displaySending();
LoRaWAN.send();
deviceState = DEVICE_STATE_CYCLE;
break;
}
case DEVICE_STATE_CYCLE:
{
// Schedule next packet transmission
isTxConfirmed = true;
txDutyCycleTime = appTxDutyCycle + randr( 0, APP_TX_DUTYCYCLE_RND );
LoRaWAN.cycle(txDutyCycleTime);
deviceState = DEVICE_STATE_SLEEP;
break;
}
case DEVICE_STATE_SLEEP:
{
LoRaWAN.displayAck();
LoRaWAN.sleep();
break;
}
default:
{
deviceState = DEVICE_STATE_INIT;
break;
}
}
}