HTCC-AB02S wake up problem

Hello, how are you? . The device communicates, it goes to sleep but never gets up again, can you help me with this? .
Frecuency : AU915MHZ

I leave you the code that I am using.

I’m using the following code:

/* The example is for CubeCell_GPS,

  • GPS works only before lorawan uplink, the board current is about 45uA when in lowpower mode.
    */
    #include “LoRaWan_APP.h”
    #include “Arduino.h”
    #include “GPS_Air530.h”
    #include “GPS_Air530Z.h”
    #include “HT_SSD1306Wire.h”

Air530ZClass GPS;
extern SSD1306Wire display;

//when gps d, if in GPS_UPDATE_TIMEOUT, gps not fixed then into low power mode
#define GPS_UPDATE_TIMEOUT 17000

//once fixed, GPS_CONTINUE_TIME later into low power mode
#define GPS_CONTINUE_TIME 15000
/*
set LoraWan_RGB to Active,the RGB active in loraWan
RGB red means sending;
RGB purple means joined done;
RGB blue means RxWindow1;
RGB yellow means RxWindow2;
RGB green means received done;
*/

/* OTAA para*/
uint8_t appEui[] = { };
uint8_t devEui[] = { }; //LSB
uint8_t appKey[] = { };

/* ABP para*/
uint8_t nwkSKey[] = { };
uint8_t appSKey[] = { };
uint32_t devAddr = ;

/LoraWan channelsmask, default channels 0-7/
//uint16_t userChannelsMask[6]={ 0x00FF,0x0000,0x0000,0x0000,0x0000,0x0000 };
uint16_t userChannelsMask[6]={ 0xFFFF,0x0000,0x0000,0x0000,0x0003,0x0000 };

/LoraWan region, select in arduino IDE tools/
LoRaMacRegion_t loraWanRegion = ACTIVE_REGION;

/LoraWan Class, Class A and Class C are supported/
DeviceClass_t loraWanClass = LORAWAN_CLASS;

/the application data transmission duty cycle. value in [ms]./
uint32_t appTxDutyCycle = 90000;

/OTAA or ABP/
bool overTheAirActivation = LORAWAN_NETMODE;

/ADR enable/
bool loraWanAdr = LORAWAN_ADR;

/* set LORAWAN_Net_Reserve ON, the node could save the network info to flash, when node reset not need to join again */
bool keepNet = LORAWAN_NET_RESERVE;

/* Indicates if the node is sending confirmed or unconfirmed messages */
bool isTxConfirmed = LORAWAN_UPLINKMODE;

/* Application port /
uint8_t appPort = 2;
/
!
Number of trials to transmit the frame, if the LoRaMAC layer did not
receive an acknowledgment. The MAC performs a datarate adaptation,
according to the LoRaWAN Specification V1.0.2, chapter 18.4, according
to the following table:

Transmission nb Data Rate
1 (first) DR
2 DR
3 max(DR-1,0)
4 max(DR-1,0)
5 max(DR-2,0)
6 max(DR-2,0)
7 max(DR-3,0)
8 max(DR-3,0)

Note, that if NbTrials is set to 1 or 2, the MAC will not decrease
the datarate, in case the LoRaMAC layer did not receive an acknowledgment
*/
uint8_t confirmedNbTrials = 3;

int32_t fracPart(double val, int n)
{
return (int32_t)((val - (int32_t)(val))*pow(10,n));
}

void VextON(void)
{
pinMode(Vext,OUTPUT);
digitalWrite(Vext, LOW);
}

void VextOFF(void) //Vext default OFF
{
pinMode(Vext,OUTPUT);
digitalWrite(Vext, HIGH);
}
void displayGPSInof()
{
char str[30];
display.clear();
display.setFont(ArialMT_Plain_10);
int index = sprintf(str,"%02d-%02d-%02d",GPS.date.year(),GPS.date.day(),GPS.date.month());
str[index] = 0;
display.setTextAlignment(TEXT_ALIGN_LEFT);
display.drawString(0, 0, str);

index = sprintf(str,"%02d:%02d:%02d",GPS.time.hour(),GPS.time.minute(),GPS.time.second(),GPS.time.centisecond());
str[index] = 0;
display.drawString(60, 0, str);

if( GPS.location.age() < 1000 )
{
display.drawString(120, 0, “A”);
}
else
{
display.drawString(120, 0, “V”);
}

index = sprintf(str,“alt: %d.%d”,(int)GPS.altitude.meters(),fracPart(GPS.altitude.meters(),2));
str[index] = 0;
display.drawString(0, 16, str);

index = sprintf(str,“hdop: %d.%d”,(int)GPS.hdop.hdop(),fracPart(GPS.hdop.hdop(),2));
str[index] = 0;
display.drawString(0, 32, str);

index = sprintf(str,“lat : %d.%d”,(int)GPS.location.lat(),fracPart(GPS.location.lat(),4));
str[index] = 0;
display.drawString(60, 16, str);

index = sprintf(str,“lon:%d.%d”,(int)GPS.location.lng(),fracPart(GPS.location.lng(),4));
str[index] = 0;
display.drawString(60, 32, str);

index = sprintf(str,“speed: %d.%d km/h”,(int)GPS.speed.kmph(),fracPart(GPS.speed.kmph(),3));
str[index] = 0;
display.drawString(0, 48, str);
display.display();
}

void printGPSInof()
{
Serial.print(“Date/Time: “);
if (GPS.date.isValid())
{
Serial.printf(”%d/%02d/%02d”,GPS.date.year(),GPS.date.day(),GPS.date.month());
}
else
{
Serial.print(“INVALID”);
}

if (GPS.time.isValid())
{
Serial.printf(" %02d:%02d:%02d.%02d",GPS.time.hour(),GPS.time.minute(),GPS.time.second(),GPS.time.centisecond());
}
else
{
Serial.print(" INVALID");
}
Serial.println();

Serial.print("LAT: “);
Serial.print(GPS.location.lat(),6);
Serial.print(”, LON: “);
Serial.print(GPS.location.lng(),6);
Serial.print(”, ALT: ");
Serial.print(GPS.altitude.meters());

Serial.println();

Serial.print("SATS: “);
Serial.print(GPS.satellites.value());
Serial.print(”, HDOP: “);
Serial.print(GPS.hdop.hdop());
Serial.print(”, AGE: “);
Serial.print(GPS.location.age());
Serial.print(”, COURSE: “);
Serial.print(GPS.course.deg());
Serial.print(”, SPEED: ");
Serial.println(GPS.speed.kmph());
Serial.println();
}

static void prepareTxFrame( uint8_t port )
{
/*appData size is LORAWAN_APP_DATA_MAX_SIZE which is defined in “commissioning.h”.
appDataSize max value is LORAWAN_APP_DATA_MAX_SIZE.
if enabled AT, don’t modify LORAWAN_APP_DATA_MAX_SIZE, it may cause system hanging or failure.
if disabled AT, LORAWAN_APP_DATA_MAX_SIZE can be modified, the max value is reference to lorawan region and SF.
for example, if use REGION_CN470,
the max value for different DR can be found in MaxPayloadOfDatarateCN470 refer to DataratesCN470 and BandwidthsCN470 in “RegionCN470.h”.
*/

float lat, lon, alt, course, speed, hdop, sats;

Serial.println(“Waiting for GPS FIX …”);

VextON();// oled power on;
//delay(10);
display.init();
display.clear();

display.setTextAlignment(TEXT_ALIGN_CENTER);
display.setFont(ArialMT_Plain_16);
display.drawString(64, 32-16/2, “GPS Searching…”);
Serial.println(“GPS Searching…”);
display.display();

GPS.begin();

uint32_t start = millis();
while( (millis()-start) < GPS_UPDATE_TIMEOUT )
{
while (GPS.available() > 0)
{
GPS.encode(GPS.read());
}
// gps fixed in a second
if( GPS.location.age() < 1000 )
{
break;
}
}

//if gps fixed, GPS_CONTINUE_TIME later stop GPS into low power mode, and every 1 second update gps, print and display gps info
if(GPS.location.age() < 1000)
{
start = millis();
uint32_t printinfo = 0;
while( (millis()-start) < GPS_CONTINUE_TIME )
{
while (GPS.available() > 0)
{
GPS.encode(GPS.read());
}

  if( (millis()-start) > printinfo )
  {
    printinfo += 1000;
    printGPSInof();
    displayGPSInof();
  }
}

}
else
{
display.clear();
display.setTextAlignment(TEXT_ALIGN_CENTER);
display.setFont(ArialMT_Plain_16);
display.drawString(64, 32-16/2, “No GPS signal”);
Serial.println(“No GPS signal”);
display.display();
// delay(2000);
}
GPS.end();
display.clear();
display.display();
display.stop();
VextOFF(); //oled power off

lat = GPS.location.lat();
lon = GPS.location.lng();
alt = GPS.altitude.meters();
course = GPS.course.deg();
speed = GPS.speed.kmph();
sats = GPS.satellites.value();
hdop = GPS.hdop.hdop();

uint16_t batteryVoltage = getBatteryVoltage();

unsigned char *puc;

appDataSize = 0;
puc = (unsigned char *)(&lat);
appData[appDataSize++] = puc[0];
appData[appDataSize++] = puc[1];
appData[appDataSize++] = puc[2];
appData[appDataSize++] = puc[3];
puc = (unsigned char *)(&lon);
appData[appDataSize++] = puc[0];
appData[appDataSize++] = puc[1];
appData[appDataSize++] = puc[2];
appData[appDataSize++] = puc[3];
puc = (unsigned char *)(&alt);
appData[appDataSize++] = puc[0];
appData[appDataSize++] = puc[1];
appData[appDataSize++] = puc[2];
appData[appDataSize++] = puc[3];
puc = (unsigned char *)(&course);
appData[appDataSize++] = puc[0];
appData[appDataSize++] = puc[1];
appData[appDataSize++] = puc[2];
appData[appDataSize++] = puc[3];
puc = (unsigned char *)(&speed);
appData[appDataSize++] = puc[0];
appData[appDataSize++] = puc[1];
appData[appDataSize++] = puc[2];
appData[appDataSize++] = puc[3];
puc = (unsigned char *)(&hdop);
appData[appDataSize++] = puc[0];
appData[appDataSize++] = puc[1];
appData[appDataSize++] = puc[2];
appData[appDataSize++] = puc[3];
appData[appDataSize++] = (uint8_t)(batteryVoltage >> 8);
appData[appDataSize++] = (uint8_t)batteryVoltage;

Serial.print(“SATS: “);
Serial.print(GPS.satellites.value());
Serial.print(”, HDOP: “);
Serial.print(GPS.hdop.hdop());
Serial.print(”, LAT: “);
Serial.print(GPS.location.lat());
Serial.print(”, LON: “);
Serial.print(GPS.location.lng());
Serial.print(”, AGE: “);
Serial.print(GPS.location.age());
Serial.print(”, ALT: “);
Serial.print(GPS.altitude.meters());
Serial.print(”, COURSE: “);
Serial.print(GPS.course.deg());
Serial.print(”, SPEED: “);
Serial.println(GPS.speed.kmph());
Serial.print(” BatteryVoltage:”);
Serial.println(batteryVoltage);
}

void setup() {
Serial.begin(115200);

#if(AT_SUPPORT)
enableAt();
#endif
LoRaWAN.displayMcuInit();
deviceState = DEVICE_STATE_INIT;
LoRaWAN.ifskipjoin();
}

void loop()
{
switch( deviceState )
{
case DEVICE_STATE_INIT:
{
#if(LORAWAN_DEVEUI_AUTO)
LoRaWAN.generateDeveuiByChipID();
#endif
#if(AT_SUPPORT)
getDevParam();
#endif
printDevParam();
LoRaWAN.init(loraWanClass,loraWanRegion);
deviceState = DEVICE_STATE_JOIN;
break;
}
case DEVICE_STATE_JOIN:
{
LoRaWAN.displayJoining();
LoRaWAN.join();
break;
}
case DEVICE_STATE_SEND:
{
prepareTxFrame( appPort );
LoRaWAN.displaySending();
LoRaWAN.send();
deviceState = DEVICE_STATE_CYCLE;
break;
}
case DEVICE_STATE_CYCLE:
{
// Schedule next packet transmission
isTxConfirmed = true;
txDutyCycleTime = appTxDutyCycle + randr( 0, APP_TX_DUTYCYCLE_RND );
LoRaWAN.cycle(txDutyCycleTime);
deviceState = DEVICE_STATE_SLEEP;
break;
}

case DEVICE_STATE_SLEEP:
{
  LoRaWAN.displayAck();
  LoRaWAN.sleep();
  break;
}
default:
{
  deviceState = DEVICE_STATE_INIT;
  break;
}

}
}